By Topic

Discovering Low-Rank Shared Concept Space for Adapting Text Mining Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bo Chen ; The Chinese University of Hong Kong, Hong Kong ; Wai Lam ; Ivor W. Tsang ; Tak-Lam Wong

We propose a framework for adapting text mining models that discovers low-rank shared concept space. Our major characteristic of this concept space is that it explicitly minimizes the distribution gap between the source domain with sufficient labeled data and the target domain with only unlabeled data, while at the same time it minimizes the empirical loss on the labeled data in the source domain. Our method is capable of conducting the domain adaptation task both in the original feature space as well as in the transformed Reproducing Kernel Hilbert Space (RKHS) using kernel tricks. Theoretical analysis guarantees that the error of our adaptation model can be bounded with respect to the embedded distribution gap and the empirical loss in the source domain. We have conducted extensive experiments on two common text mining problems, namely, document classification and information extraction, to demonstrate the efficacy of our proposed framework.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 6 )