By Topic

Genetic-Algorithm-Based Optimization Approach for Energy Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Arabali, A. ; Electr. Eng. Dept., Univ. of Nevada, Reno, NV, USA ; Ghofrani, M. ; Etezadi-Amoli, M. ; Fadali, M.S.
more authors

This paper proposes a new strategy to meet the controllable heating, ventilation, and air conditioning (HVAC) load with a hybrid-renewable generation and energy storage system. Historical hourly wind speed, solar irradiance, and load data are used to stochastically model the wind generation, photovoltaic generation, and load. Using fuzzy C-Means (FCM) clustering, these data are grouped into 10 clusters of days with similar data points to account for seasonal variations. In order to minimize cost and increase efficiency, we use a GA-based optimization approach together with a two-point estimate method. Minimizing the cost function guarantees minimum PV and wind generation installation as well as storage capacity selection to supply the HVAC load. Different scenarios are examined to evaluate the efficiency of the system with different percentages of load shifting. The maximum capacity of the storage system and excess energy are calculated as the most important indices for energy efficiency assessment. The cumulative distribution functions of these indices are plotted and compared. A smart-grid strategy is developed for matching renewable energy generation (solar and wind) with the HVAC load.

Published in:

Power Delivery, IEEE Transactions on  (Volume:28 ,  Issue: 1 )