Cart (Loading....) | Create Account
Close category search window
 

Data-Driven Time Discrete Models for Dynamic Prediction of the Hot Metal Silicon Content in the Blast Furnace—A Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saxen, H. ; Dept. of Chem. Eng., Abo Akademi Univ., Åbo, Finland ; Chuanhou Gao ; Zhiwei Gao

A review of black-box models for short-term time-discrete prediction of the silicon content of hot metal produced in blast furnaces is presented. The review is primarily focused on work presented in journal papers, but still includes some early conference papers (published before 1990) which have a clear contribution to the field. Linear and nonlinear models are treated separately, and within each group a rough subdivision according to the model type is made. Within each subsection the models are treated (almost) chronologically, presenting the principle behind the modeling approach, the signals used and the main findings in terms of accuracy and usefulness. Finally, in the final section the approaches are discussed and some potential lines of future research are proposed. In an Appendix , a list of commonly used input and output variables in the models is presented.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:9 ,  Issue: 4 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.