Cart (Loading....) | Create Account
Close category search window
 

Analytical Modelling and Optimization of Congestion Control for Prioritized Multi-Class Self-Similar Traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geyong Min ; Dept. of Comput., Univ. of Bradford, Bradford, UK ; Xiaolong Jin

Traffic congestion in communication networks can dramatically deteriorate user-perceived Quality-of-Service (QoS). The integration of the Random Early Detection (RED) and priority scheduling mechanisms is a promising scheme for congestion control and provisioning of differentiated QoS required by multimedia applications. Although analytical modelling of RED congestion control has received significant research efforts, the performance models reported in the current literature were primarily restricted to the RED algorithm only without consideration of traffic scheduling scheme for QoS differentiation. Moreover, for analytical tractability, these models were developed under the simplified assumption that the traffic follows Short-Range-Dependent (SRD) arrival processes (e.g., Poisson or Markov processes), which are unable to capture the self-similar nature (i.e., scale-invariant burstiness) of multimedia traffic in modern communication networks. To fill these gaps, this paper presents a new analytical model of RED congestion control for prioritized multi-class self-similar traffic. The closed-form expressions for the loss probability of individual traffic classes are derived. The effectiveness and accuracy of the model are validated through extensive comparison between analytical and simulation results. To illustrate its application, the model is adopted as a cost-effective tool to investigate the optimal threshold configuration and minimize the required buffer space with congestion control.

Published in:

Communications, IEEE Transactions on  (Volume:61 ,  Issue: 1 )

Date of Publication:

January 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.