Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A large-scale empirical study of just-in-time quality assurance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kamei, Y. ; Grad. Sch., Kyushu Univ., Fukuoka, Japan ; Shihab, E. ; Adams, B. ; Hassan, A.E.
more authors

Defect prediction models are a well-known technique for identifying defect-prone files or packages such that practitioners can allocate their quality assurance efforts (e.g., testing and code reviews). However, once the critical files or packages have been identified, developers still need to spend considerable time drilling down to the functions or even code snippets that should be reviewed or tested. This makes the approach too time consuming and impractical for large software systems. Instead, we consider defect prediction models that focus on identifying defect-prone (“risky”) software changes instead of files or packages. We refer to this type of quality assurance activity as “Just-In-Time Quality Assurance,” because developers can review and test these risky changes while they are still fresh in their minds (i.e., at check-in time). To build a change risk model, we use a wide range of factors based on the characteristics of a software change, such as the number of added lines, and developer experience. A large-scale study of six open source and five commercial projects from multiple domains shows that our models can predict whether or not a change will lead to a defect with an average accuracy of 68 percent and an average recall of 64 percent. Furthermore, when considering the effort needed to review changes, we find that using only 20 percent of the effort it would take to inspect all changes, we can identify 35 percent of all defect-inducing changes. Our findings indicate that “Just-In-Time Quality Assurance” may provide an effort-reducing way to focus on the most risky changes and thus reduce the costs of developing high-quality software.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 6 )