By Topic

Automatic Relevance Determination in Nonnegative Matrix Factorization with the /spl beta/-Divergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tan, V.Y.F. ; Inst. for Infocomm Res., A*STAR, Singapore, Singapore ; Fevotte, C.

This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the β-divergence. The β-divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data fidelity and overfitting. We propose a Bayesian model based on automatic relevance determination (ARD) in which the columns of the dictionary matrix and the rows of the activation matrix are tied together through a common scale parameter in their prior. A family of majorization-minimization (MM) algorithms is proposed for maximum a posteriori (MAP) estimation. A subset of scale parameters is driven to a small lower bound in the course of inference, with the effect of pruning the corresponding spurious components. We demonstrate the efficacy and robustness of our algorithms by performing extensive experiments on synthetic data, the swimmer dataset, a music decomposition example, and a stock price prediction task.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 7 )