By Topic

Coupled Gaussian processes for pose-invariant facial expression recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ognjen Rudovic ; Imperial College London, London, UK ; Maja Pantic ; Ioannis Patras

We propose a method for head-pose invariant facial expression recognition that is based on a set of characteristic facial points. To achieve head-pose invariance, we propose the Coupled Scaled Gaussian Process Regression (CSGPR) model for head-pose normalization. In this model, we first learn independently the mappings between the facial points in each pair of (discrete) nonfrontal poses and the frontal pose, and then perform their coupling in order to capture dependences between them. During inference, the outputs of the coupled functions from different poses are combined using a gating function, devised based on the head-pose estimation for the query points. The proposed model outperforms state-of-the-art regression-based approaches to head-pose normalization, 2D and 3D Point Distribution Models (PDMs), and Active Appearance Models (AAMs), especially in cases of unknown poses and imbalanced training data. To the best of our knowledge, the proposed method is the first one that is able to deal with expressive faces in the range from $(-45^circ)$ to $(+45^circ)$ pan rotation and $(-30^circ)$ to $(+30^circ)$ tilt rotation, and with continuous changes in head pose, despite the fact that training was conducted on a small set of discrete poses. We evaluate the proposed method on synthetic and real images depicting acted and spontaneously displayed facial expressions.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 6 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal