By Topic

Analysis and Design of Low Phase-Noise Oscillators With Nonlinear Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alireza Imani ; Electrical Engineering (Electrophysics), University of Southern California, Los Angeles, United States ; Hossein Hashemi

It is known that the dynamics and phase noise of resonator-based self-sustained nonlinear oscillators is affected by the presence of a nonlinear resonator. In fact, it has been shown that resonator nonlinearity can enhance the oscillator phase noise under certain conditions. This paper offers a new formulation and analytical approach to describe the effect of resonator nonlinearity on the phase noise of self-sustained oscillators. The analysis applies properties of stochastic Ito integrals to oscillator's averaged stochastic nonlinear differential equations with periodic steady state solutions. The results offer insight into designing low phase-noise oscillators with nonlinear resonators. We show that for a given nonlinear oscillator topology, there is an optimum power incident on the resonator that minimizes the phase noise. As a proof of concept, the analysis is applied to a 1.5-GHz CMOS oscillator that uses a nonlinear film bulk acoustic resonator (FBAR). A nonlinear model including memory effects for the FBAR is proposed and used in the formulation. At the optimum design point, the oscillator shows measured phase noise of -110 dBc/Hz at 1 kHz, -125 dBc/Hz at 10 kHz, -145 dBc/Hz at 100 kHz, and -160 dBc/Hz at 10-MHz offset frequencies while consuming 40 mW of dc power. This results in 10 fs of timing jitter.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 12 )