Cart (Loading....) | Create Account
Close category search window
 

Component-Based Representation in Automated Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bonnen, K. ; Inst. for Neurosci., Univ. of Texas, Austin, TX, USA ; Klare, B.F. ; Jain, A.K.

This paper presents a framework for component-based face alignment and representation that demonstrates improvements in matching performance over the more common holistic approach to face alignment and representation. This work is motivated by recent evidence from the cognitive science community demonstrating the efficacy of component-based facial representations. The component-based framework presented in this paper consists of the following major steps: 1) landmark extraction using Active Shape Models (ASM), 2) alignment and cropping of components using Procrustes Analysis, 3) representation of components with Multiscale Local Binary Patterns (MLBP), 4) per-component measurement of facial similarity, and 5) fusion of per-component similarities. We demonstrate on three public datasets and an operational dataset consisting of face images of 8000 subjects, that the proposed component-based representation provides higher recognition accuracies over holistic-based representations. Additionally, we show that the proposed component-based representations: 1) are more robust to changes in facial pose, and 2) improve recognition accuracy on occluded face images in forensic scenarios.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:8 ,  Issue: 1 )
Biometrics Compendium, IEEE

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.