By Topic

Single-sensor multi-channel maximum power point tracking controller for photovoltaic solar systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiang, Y. ; Dept. of Electr. & Comput. Eng., Univ. of Alabama, Tuscaloosa, AL, USA ; Abu Qahouq, J.A.

This study presents a maximum power point tracking (MPPT) method and controller for a multi-channel (N-channel) photovoltaic solar system. The N-channel single-sensor MPPT (SS-MPPT) controller is able to track the maximum power point (MPP) of each solar panel using only one output current sensor in the N-channels. Compared with a conventional N-channel MPPT system which requires N voltage sensors, N current sensors, 2N analogue-to-digital converters (ADCs) (or an ADC with 2N channels) and N-MPPT controllers along with the associated conditioning circuitries, the proposed method only requires one sensor, one ADC and one MPPT controller. In the proposed N-channel SS-MPPT controller, the MPPT for each channel is achieved by tracking the maxima of the output (load) current (resulting in the maxima of the system output power) using the Perturb and Observe algorithm and the maxima of each channel power via channel output current difference optimisation. Two algorithms which can be used to realise the SS-MPPT controller are discussed and compared. The concept and operation of the SS-MPPT controller is presented, analysed and verified by results obtained from a proof-of-concept experimental prototype.

Published in:

Power Electronics, IET  (Volume:5 ,  Issue: 8 )