By Topic

The PSTD algorithm: a fast and accurate time-domain method for electronic package characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Q. H. Liu ; Klipsch Sch. of Electr. & Comput. Eng., New Mexico State Univ., Las Cruces, NM, USA ; Y. L. Li ; J. C. Liao

Conventional finite-difference time-domain (FDTD) methods are very inefficient for simulations of electromagnetic wave propagation in large-scale complex media. This is mainly because of the low-accuracy associated with the spatial discretization in the FDTD methods. As a result, even for a moderate size problem, a large number of cells (typically 10-20 cells per wavelength) are required to obtain reasonably accurate results. This requirement becomes much more stringent for large-scale problems since the dispersion error grows rapidly with the propagation distance. Recently a pseudospectral time-domain (PSTD) algorithm has been developed which requires only two cells per wavelength regardless of the problem size. In terms of spatial discretization, this method is an optimal time-domain solution since it has an infinite order of accuracy in the spatial representation. For a problem with structures much smaller than the smallest wavelength, the PSTD algorithm still provides high accuracy up to a much higher spatial frequency than FDTD methods. In addition, the only error introduced in the PSTD algorithm is the temporal discretization. Unlike the dispersion error in FDTD methods, this error is isotropic and does not increase with the scale of the problem. In this work, we apply the PSTD method to characterize the electrical performance of electronic packages. In particular, it is used to investigate the effects of enclosure resonance and electromagnetic interference.

Published in:

Electrical Performance of Electronic Packaging, 1997., IEEE 6th Topical Meeting on

Date of Conference:

27-29 Oct. 1997