By Topic

The importance of inductance and inductive coupling for on-chip wiring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Deutsch, A. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Smith, H. ; Katopis, G.A. ; Becker, W.D.
more authors

The importance of inductance and inductive coupling for accurate delay and crosstalk prediction in on-chip interconnections is investigated experimentally for the top three layers in a five-layer wiring structure and guidelines are formulated. In-plane and between-plane crosstalk and delay dependence on driver and receiver circuit device sizes and line lengths and width are analyzed with representative CMOS circuits. Simplified constant-parameter, distributed coupled-line RLC-circuit representation that approximates the waveforms predicted with frequency-dependent line parameters is shown to be feasible.

Published in:

Electrical Performance of Electronic Packaging, 1997., IEEE 6th Topical Meeting on

Date of Conference:

27-29 Oct. 1997