By Topic

First Order Mem-Circuits: Modeling, Nonlinear Oscillations and Bifurcations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Riaza, R. ; Dept. de Mat. Aplic. a las Tecnol. de la Informacion, Univ. Politec. de Madrid, Madrid, Spain

This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 6 )