By Topic

Fault-Tolerant Strategy for a Photovoltaic DC--DC Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eunice Ribeiro ; Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal ; Antonio J. Marques Cardoso ; Chiara Boccaletti

The photovoltaic (PV) technology has a small impact on the environment and is suitable for a wide range of applications. The main barrier for a more extensive implementation has been the reliability, mainly related to the power converters. According to this consideration, this paper presents an open-circuit fault diagnosis and fault-tolerant scheme for a three-level boost converter in a PV power system using batteries as storage devices. The fault diagnostic method takes advantage only of the control variables used for maximum power point tracking and output dc-link capacitor voltage balance. The fault-tolerant strategy requires only a few components added to the original three-level boost converter, so that, under an open-circuit power switch fault, it can be partly reconfigured into a two-level boost converter ensuring battery energy supply. Experimental results verify the proposed fault diagnostic method and reconfiguration for fault-tolerant operation.

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 6 )