Cart (Loading....) | Create Account
Close category search window

Controllable aggregates of silver nanoparticle induced by methanol for surface-enhanced Raman scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang, Zhiliang ; Research Center of Analysis and Test, Shandong Polytechnic University, Jinan 250353, China ; Wen, Yongqiang

Your organization might have access to this article on the publisher's site. To check, click on this link: 

In this work, a series of highly sensitive surface-enhanced Raman scattering substrates have been achieved based on the controllable aggregation of silver nanoparticles. In such system, hexadecylamine-capped silver nanoparticles were ink-jet printed on glass substrates and subsequently dipped into methanol solution. An aggregation was induced due to preferential dissolution of hexadecylamine into methanol and partial removal of the protective layers on silver nanoparticle surfaces, which exhibited stable and controllable Raman enhancement effect. This strategy could be further extended to construct various chemical and biological functional sensors.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 17 )

Date of Publication:

Oct 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.