By Topic

A Metrics-Based Data Mining Approach for Software Clone Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Salwa K. Abd-El-Hafiz ; Eng. Math. Dept., Cairo Univ., Cairo, Egypt

The detection of function clones in software systems is valuable for the code adaptation and error checking maintenance activities. This paper presents an efficient metrics-based data mining clone detection approach. First, metrics are collected for all functions in the software system. A data mining algorithm, fractal clustering, is then utilized to partition the software system into a relatively small number of clusters. Each of the resulting clusters encapsulates functions that are within a specific proximity of each other in the metrics space. Finally, clone classes, rather than pairs, are easily extracted from the resulting clusters. For large software systems, the approach is very space efficient and linear in the size of the data set. Evaluation is performed using medium and large open source software systems. In this evaluation, the effect of the chosen metrics on the detection precision is investigated.

Published in:

2012 IEEE 36th Annual Computer Software and Applications Conference

Date of Conference:

16-20 July 2012