By Topic

Hyperspectral Image Classification Using Empirical Mode Decomposition With Spectral Gradient Enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alp Ertürk ; Kocaeli University Laboratory of Image and Signal Processing (KULIS), Electronics and Telecommunications Engineering Department, University of Kocaeli, Izmit , Turkey ; Mehmet Kemal Güllü ; Sarp Ertürk

This paper proposes to use empirical mode decomposition (EMD) with spectral gradient enhancement to increase the classification accuracy of hyperspectral images with support vector machine (SVM) classification. Recently, it has been shown that higher hyperspectral image classification accuracy can be achieved by using 2-D EMD that is applied to each hyperspectral band separately to obtain the intrinsic mode functions (IMFs) of each band, while the sum of the IMFs are used as feature data in the SVM classification process. In the previous approach, IMFs have been summed directly, i.e., with equal weights. It is shown in this paper, that it is possible to significantly increase the classification accuracy by using appropriate weights for the IMFs in the summation process. In the proposed approach, the weights of the IMFs are obtained so as to optimize the total absolute spectral gradient, and a genetic algorithm-based optimization strategy has been adopted to obtain the weights automatically in this way. While the 2-D EMD basically provides spatial processing, the proposed method further incorporates spectral enhancement into the process. It is shown that a significant increase in hyperspectral image classification accuracy can be achieved using the proposed approach.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 5 )