By Topic

Coordinated DC Voltage Control of Wind Turbine With Embedded Energy Storage System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guoyi Xu ; Sch. of Electron., Electr. Eng. & Comput. Sci., Queen''s Univ. of Belfast, Belfast, UK ; Lie Xu ; Morrow, D.J. ; Dong Chen

This paper investigates dc voltage control strategies for output power smoothing of a fully rated converter-based wind turbine with energy storage device connected to the common dc link via a bidirectional dc/dc converter. Since the dc link voltage ripple reflects power oscillation, coordinated dc voltage control schemes are used for the ac network side converter and energy storage system to ensure that generated high-frequency power fluctuation is absorbed by the energy storage system, whereas the low-frequency components are transmitted to the connected ac network. Two methods have been proposed: one is based on proportional-integral (PI) voltage controller and low-pass filter with large time constant, and the other is based on PI with low natural frequency and droop controller with large droop gain. The detailed controller designs are described and system stability is assessed and shown to be stable. Both the MATLAB/Simulink simulations and experimental results are presented to demonstrate the effectiveness of the proposed methods for power smoothing.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:27 ,  Issue: 4 )