Cart (Loading....) | Create Account
Close category search window
 

Tissue Classification Using Ultrasound-Induced Variations in Acoustic Backscattering Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Daoud, M.I. ; Dept. of Comput. Eng., German Jordanian Univ., Amman, Jordan ; Mousavi, P. ; Imani, F. ; Rohling, R.
more authors

Ultrasound (US) radio-frequency (RF) time series is an effective tissue classification method that enables accurate cancer diagnosis, but the mechanisms underlying this method are not completely understood. This paper presents a model to describe the variations in tissue temperature and sound speed that take place during the RF time series scanning procedures and relate these variations to US backscattering. The model was used to derive four novel characterization features. These features were used to classify three animal tissues, and they obtained accuracies as high as 88.01%. The performance of the proposed features was compared with RF time series features proposed in a previous study. The results indicated that the US-induced variations in tissue temperature and sound speed, which were used to derive the proposed features, were important contributors to the tissue typing capabilities of the RF time series. Simulations carried out to estimate the heating induced during the scanning procedure employed in this study showed temperature rises lower than 2 °C. The model and results presented in this paper can be used to improve the RF time series.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.