Cart (Loading....) | Create Account
Close category search window
 

Bridge Thermal Dilation Monitoring With Millimeter Sensitivity via Multidimensional SAR Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fornaro, G. ; Inst. for the Electromagn. Sensing of the Environ. (IREA), Naples, Italy ; Reale, D. ; Verde, S.

The new generation of synthetic aperture radar (SAR) sensors is providing images with very high spatial resolution, improved up to the meter scale. Such a resolution increase allows more accurate monitoring capabilities by means of interferometric approaches. The use of higher frequency enhances the sensitivity of the system even to minute changes, such as thermal dilations. This phenomenon has an impact on the interferometric products, particularly on the deformation velocity maps, if not properly handled. Man-made structures, such as steel core bridges and specific buildings, may be very sensible to thermal dilation effects. By extending the multitemporal differential interferometry SAR processing chains, in our case based on the multidimensional imaging (MDI) approach, an additional parameter related to temperature differences at acquisition instants, the thermal coefficient, can be accurately estimated. This parameter provides interesting perspectives in application to infrastructure monitoring: It brings information about the thermal behavior of the imaged objects. In this letter, we investigate the thermal response of the Musmeci bridge (Potenza, Italy), by experimenting the extended MDI approach on a real TerraSAR-X data set. Results highlight the possibility of such a technique to obtain measurements of the motion that is highly correlated with temperature, thus providing useful information about the static structure of bridges.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 4 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.