By Topic

High-Speed 1550 nm VCSEL Data Transmission Link Employing 25 GBd 4-PAM Modulation and Hard Decision Forward Error Correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Roberto Rodes ; Department of Photonics Engineering, Technical University of Denmark, Lyngby, Denmark ; Michael Mueller ; Bomin Li ; Jose Estaran
more authors

Current short-range optical interconnects capacity is moving from 100 to 400 Gb/s and beyond. Direct modulation of several laser sources is used to minimize bandwidth limitations of current optical and electrical components. This total capacity is provided either by wavelength division multiplexing or parallel optics; it is important to investigate on the ultimate transmission capabilities of each laser source to facilitate current capacity standards and allow for future demands. High-speed four-level pulse amplitude modulation at 25 GBd of a 1.5 μ m vertical-cavity surface-emitting laser (VCSEL) is presented in this paper. The 20 GHz 3 dB-bandwidth laser is, at the time of submission, the largest bandwidth of a 1.5 μ m VCSEL ever reported. Forward error correction (FEC) is implemented to achieve transmission over 100 m virtually error free after FEC decoding. Line rate of 100 Gb/s is achieved by emulation polarization multiplexing using 50 Gb/s signal obtained from a single VCSEL.

Published in:

Journal of Lightwave Technology  (Volume:31 ,  Issue: 4 )