By Topic

Real-Time Misbehavior Detection in IEEE 802.11-Based Wireless Networks: An Analytical Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The distributed nature of the CSMA/CA-based wireless protocols, for example, the IEEE 802.11 distributed coordinated function (DCF), allows malicious nodes to deliberately manipulate their backoff parameters and, thus, unfairly gain a large share of the network throughput. In this paper, we first design a real-time backoff misbehavior detector, termed as the fair share detector (FS detector), which exploits the nonparametric cumulative sum (CUSUM) test to quickly find a selfish malicious node without any a priori knowledge of the statistics of the selfish misbehavior. While most of the existing schemes for selfish misbehavior detection depend on heuristic parameter configuration and experimental performance evaluation, we develop a Markov chain-based analytical model to systematically study the performance of the FS detector in real-time backoff misbehavior detection. Based on the analytical model, we can quantitatively compute the system configuration parameters for guaranteed performance in terms of average false positive rate, average detection delay, and missed detection ratio under a detection delay constraint. We present thorough simulation results to confirm the accuracy of our theoretical analysis as well as demonstrate the performance of the developed FS detector.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:13 ,  Issue: 1 )