Cart (Loading....) | Create Account
Close category search window
 

Self-regularization of chaos in neural systems: experimental and theoretical results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rabinovich, M.I. ; Inst. for Nonlinear Sci., California Univ., San Diego, La Jolla, CA, USA ; Abarbanel, H.D.I. ; Huerta, R. ; Elson, R.
more authors

The results of neurobiological studies in both vertebrates and invertebrates lead to the general question: How is a population of neurons, whose individual activity is chaotic and uncorrelated able to form functional circuits with regular and stable behavior? What are the circumstances which support these regular oscillations? What are the mechanisms that promote this transition? We address these questions using our experimental and modeling studies describing the behavior of groups of spiking-bursting neurons. We show that the role of inhibitory synaptic coupling between neurons is crucial in the self-control of chaos

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:44 ,  Issue: 10 )

Date of Publication:

Oct 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.