By Topic

Robust nonlinear H synchronization of chaotic Lur'e systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Suykens, J.A.K. ; ESAT, Katholieke Univ., Leuven, Heverlee, Belgium ; Curran, P.F. ; Vandewalle, J. ; Chua, L.O.

We propose a method of robust nonlinear H master-slave synchronization for chaotic Lur'e systems with applications to secure communication. The scheme makes use of vector field modulation and either full static state or linear dynamic output error feedback control. The master-slave systems are assumed to be nonidentical and channel noise is taken into account. Binary valued continuous time message signals are recovered by minimizing the L2-gain from the exogenous input to the tracking error for the standard plant representation of the scheme. The exogenous input takes into account the message signal, channel noise and parameter mismatch. Matrix inequality conditions for dissipativity with finite L2-gain of the standard plant form are derived based on a quadratic storage function. The controllers are designed by solving a nonlinear optimization problem which takes into account both channel noise and parameter mismatch. The method is illustrated on Chua's circuit

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:44 ,  Issue: 10 )