By Topic

Approximately Orchestrated Routing and Transportation Analyzer: Large-scale traffic simulation for autonomous vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carlino, D. ; Dept. of Comput. Sci., Univ. of Texas at Austin, Austin, TX, USA ; Depinet, M. ; Khandelwal, P. ; Stone, P.

Autonomous vehicles have seen great advancements in recent years, and such vehicles are now closer than ever to being commercially available. The advent of driverless cars provides opportunities for optimizing traffic in ways not possible before. This paper introduces an open source multiagent microscopic traffic simulator called AORTA, which stands for Approximately Orchestrated Routing and Transportation Analyzer, designed for optimizing autonomous traffic at a city-wide scale. AORTA creates scale simulations of the real world by generating maps using publicly available road data from OpenStreetMap (OSM). This allows simulations to be set up through AORTA for a desired region anywhere in the world in a matter of minutes. AORTA allows for traffic optimization by creating intelligent behaviors for individual driver agents and intersection policies to be followed by these agents. These behaviors and policies define how agents interact with one another, control when they cross intersections, and route agents to their destination. This paper demonstrates a simple application using AORTA through an experiment testing intersection policies at a city-wide scale.

Published in:

Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on

Date of Conference:

16-19 Sept. 2012