By Topic

Adaptive Subset Kernel Principal Component Analysis for Time-Varying Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Washizawa, Y. ; RIKEN Brain Sci. Inst., Wako, Japan

Kernel principal component analysis (KPCA) and its online learning algorithms have been proposed and widely used. Since KPCA uses training samples for bases of the operator, its online learning algorithms require the preparation of all training samples beforehand. Subset KPCA (SubKPCA), which uses a subset of samples for the basis set, has been proposed and has demonstrated better performance with less computational complexity. In this paper, we extend SubKPCA to an online version and propose methods to add and exchange a sample in the basis set. Since the proposed method uses the basis set, we do not need to prepare all training samples beforehand. Therefore, the proposed method can be applied to time-varying patterns, in contrast to existing online KPCA algorithms. Experimental results demonstrate the advantages of the proposed method.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 12 )