By Topic

Optimal Selection of Parameters for Nonuniform Embedding of Chaotic Time Series Using Ant Colony Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meie Shen ; School of Computer Science, Beijing Information Science and Technology University, Beijing, China ; Wei-Neng Chen ; Jun Zhang ; Henry Shu-Hung Chung
more authors

The optimal selection of parameters for time-delay embedding is crucial to the analysis and the forecasting of chaotic time series. Although various parameter selection techniques have been developed for conventional uniform embedding methods, the study of parameter selection for nonuniform embedding is progressed at a slow pace. In nonuniform embedding, which enables different dimensions to have different time delays, the selection of time delays for different dimensions presents a difficult optimization problem with combinatorial explosion. To solve this problem efficiently, this paper proposes an ant colony optimization (ACO) approach. Taking advantage of the characteristic of incremental solution construction of the ACO, the proposed ACO for nonuniform embedding (ACO-NE) divides the solution construction procedure into two phases, i.e., selection of embedding dimension and selection of time delays. In this way, both the embedding dimension and the time delays can be optimized, along with the search process of the algorithm. To accelerate search speed, we extract useful information from the original time series to define heuristics to guide the search direction of ants. Three geometry- or model-based criteria are used to test the performance of the algorithm. The optimal embeddings found by the algorithm are also applied in time-series forecasting. Experimental results show that the ACO-NE is able to yield good embedding solutions from both the viewpoints of optimization performance and prediction accuracy.

Published in:

IEEE Transactions on Cybernetics  (Volume:43 ,  Issue: 2 )