Cart (Loading....) | Create Account
Close category search window
 

Random-Walker Monocular Road Detection in Adverse Conditions Using Automated Spatiotemporal Seed Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siogkas, G.K. ; Department of Electrical and Computer Engineering, University of Patras , Rio, Greece ; Dermatas, E.S.

A key module of modern advanced driver-assistance systems (ADASs) is the road detector, which has to be robust, even under adverse conditions. The ultimate goal of such a system, which uses only visual information acquired from a color video camera, is to classify each frame pixel as belonging to the road or not. In this direction, this paper proposes a new fully automatic algorithm that combines both time and spatial information using the efficient random-walker algorithm (RWA) as a segmentation tool. A novel technique for automatic seed selection is proposed, utilizing features derived from a shadow-resistant optical flow estimator using the $c_{1}$ channel of the $c_{1}c_{2}c_{3}$ color space, along with a priori information and previous frame segmentation results. The proposed system is qualitatively assessed using video sequences in both typical and adverse conditions, including heavy traffic, shadows, tunnels, rain, night, etc. It is also quantitatively compared with previous efforts on a publicly available manually annotated onboard video database, providing superior results.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.