Cart (Loading....) | Create Account
Close category search window

A Hybrid Architecture for Compressive Sensing 3-D CT Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jianwen Chen ; Dept. of Comput. Sci., Univ. of California, Los Angeles, Los Angeles, CA, USA ; Cong, J. ; Vese, L.A. ; Villasenor, J.
more authors

The radiation dose associated with computerized tomography (CT) is significant. Compressive sensing (CS) methods provide mathematical approaches to reduce the radiation exposure without sacrificing reconstructed image quality. However, the computational requirements of these algorithms is much higher than conventional image reconstruction approaches such as filtered back projection (FBP). This paper describes a new compressive sensing 3-D image reconstruction algorithm based on expectation maximization and total variation, termed EM+TV, and also introduces a promising hybrid architecture implementation for this algorithm involving the combination of a CPU, GPU, and FPGA. An FPGA is used to speed up the major computation kernel (EM), and a GPU is used to accelerate the TV operations. The performance results indicate that this approach provides lower energy consumption and better reconstruction quality, and illustrates an example of the advantages that can be realized through domain-specific computing.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:2 ,  Issue: 3 )

Date of Publication:

Sept. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.