Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Stirban, A. ; Dept. of Electr. Eng., Univ. Politeh. of Timisoara, Timisoara, Romania ; Boldea, I. ; Andreescu, G.

This paper proposes and investigates an offline finite-element-method (FEM)-assisted position and speed observer for brushless dc permanent-magnet (PM) (BLDC-PM) motor drive sensorless control based on the line-to-line PM flux linkage estimation. The zero crossing of the line-to-line PM flux linkage occurs right in the middle of two commutation points (CPs) and is used as a basis for the position and speed observer. The position between CPs is obtained by comparing the estimated line-to-line PM flux with the FEM-calculated line-to-line PM flux. Even if the proposed observer relies on the fundamental model of the machine, a safe starting strategy under heavy load torque, called I-f control, is used, with seamless transition to the proposed sensorless control. The I-f starting method allows low-speed sensorless control, without knowing the initial position and without machine parameter identification. Digital simulations and experimental results are shown, demonstrating the reliability of the FEM-assisted position and speed observer for BLDC-PM motor sensorless control operation.

Published in:

Industry Applications, IEEE Transactions on  (Volume:48 ,  Issue: 6 )