By Topic

License Plate Character Recognition via Signature Analysis and Features Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Angeline, L. ; Modeling, Simulation & Comput. Lab., Univ. Malaysia Sabah, Kota Kinabalu, Malaysia ; Kow, W.Y. ; Khong, W.L. ; Choong, M.Y.
more authors

A new algorithm for license plate character recognition is proposed on the basis of Signature analysis properties and features extraction. Signature analysis has been used to locate license plate region and its properties can be further utilised in supporting and affirming the license plate character recognition. This paper presents the implementation of Signature Analysis combined with Features Extraction to form feature vector for each character with a length of 56. The recognition stage utilised this vector to be trained in a simple multi-layer feed-forward back-propagation neural Network with 56 inputs and 34 neurons in its output layer. The network is trained with both ideal and noisy characters. The results obtained show that the proposed system is capable to recognise both ideal and non-ideal license plate characters. The system also capable to tackle the common character declassification problems due to similarity in characters.

Published in:

Computational Intelligence, Modelling and Simulation (CIMSiM), 2012 Fourth International Conference on

Date of Conference:

25-27 Sept. 2012