Cart (Loading....) | Create Account
Close category search window
 

Disaster Management and Profile Modelling of IoT Objects: Conceptual Parameters for Interlinked Objects in Relation to Social Network Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zelenkauskaite, A. ; Dept. of Telecommun., Indiana Univ., Bloomington, IN, USA ; Bessis, N. ; Sotiriadis, S. ; Asimakopoulou, E.

In recent years, the emergence of ubiquitous and pervasive computing suggests the radical transformation of the Internet to incorporate physical objects. The transformation suggests the enabling of a new form of communication and interaction style that incorporates people, their smart devices and their physical objects through the utilization of distributed sensors spread in the environment. In this study, we propose extending Internet of Things (IoT) by modelling an IoT enabled smart environment as a whole, representing the dynamic communication and interaction among all objects (users, devices, physical objects and sensors). This is by recognizing and categorizing objects' properties in the form of a generic profile. We also reflect this in a disaster management context. That is by identifying which of the parameters of these smart objects are fixed, constant and persistent over time and which parameters are actually change over time, i.e. those characterized by their transient and dynamic nature. Thus, through the process of communication and interaction of the objects, we analyze parameters by demonstrating their static and/or dynamic properties as well as those supporting context-aware variables which are evident in disaster scenarios. To achieve these goals, we designed the persistent or temporal relationships to encompass internal information of smart-objects, along with their characteristics that actually depict their capacity to offer services to users by properties' matchmaking. The interlinked relationships represent a 'social network' providing a terrain of flexible scenarios that would lead to tailored parameters to fit user preferences. To enable communication among them in a dynamic dimension we utilized a distributed topology in which communication could occur indirectly between objects. Finally, we detailed a generic - but equally applicable for disaster management - case scenario in which we used graph theory to demonstrate how embedded intell- gence to real-life objects will be able to assist the smart-resource pairing, thus improving resource discovery and harvesting process by taking into consideration user needs and preferences.

Published in:

Intelligent Networking and Collaborative Systems (INCoS), 2012 4th International Conference on

Date of Conference:

19-21 Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.