Cart (Loading....) | Create Account
Close category search window
 

Autotuning Stencil-Based Computations on GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mametjanov, A. ; Math. & Comput. Sci. Div., Argonne Nat. Lab., Argonne, IL, USA ; Lowell, D. ; Ching-Chen Ma ; Norris, B.

Finite-difference, stencil-based discretization approaches are widely used in the solution of partial differential equations describing physical phenomena. Newton-Krylov iterative methods commonly used in stencil-based solutions generate matrices that exhibit diagonal sparsity patterns. To exploit these structures on modern GPUs, we extend the standard diagonal sparse matrix representation and define new matrix and vector data types in the PETSc parallel numerical toolkit. We create tunable CUDA implementations of the operations associated with these types after identifying a number of GPU-specific optimizations and tuning parameters for these operations. We discuss our implementation of GPU auto tuning capabilities in the Orio framework and present performance results for several kernels, comparing them with vendor-tuned library implementations.

Published in:

Cluster Computing (CLUSTER), 2012 IEEE International Conference on

Date of Conference:

24-28 Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.