By Topic

Parallelizing more Loops with Compiler Guided Refactoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Larsen, P. ; DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark ; Ladelsky, R. ; Lidman, J. ; McKee, S.A.
more authors

The performance of many parallel applications relies not on instruction-level parallelism but on loop-level parallelism. Unfortunately, automatic parallelization of loops is a fragile process, many different obstacles affect or prevent it in practice. To address this predicament we developed an interactive compilation feedback system that guides programmers in iteratively modifying their application source code. This helps leverage the compiler's ability to generate loop-parallel code. We employ our system to modify two sequential benchmarks dealing with image processing and edge detection, resulting in scalable parallelized code that runs up to 8.3 times faster on an eight-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should be combined with target-specific optimizations. Furthermore, comparing the first benchmark to manually-parallelized, hand-optimized pthreads and OpenMP versions, we find that code generated using our approach typically outperforms the pthreads code (within 93-339%). It also performs competitively against the OpenMP code (within 75-111%). The second benchmark outperforms manually-parallelized and optimized OpenMP code (within 109-242%).

Published in:

Parallel Processing (ICPP), 2012 41st International Conference on

Date of Conference:

10-13 Sept. 2012