By Topic

On Shared-Memory Parallelization of a Sparse Matrix Scaling Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Catalyurek, U.V. ; Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA ; Kaya, K. ; Ucar, B.

We discuss efficient shared memory parallelization of sparse matrix computations whose main traits resemble to those of the sparse matrix-vector multiply operation. Such computations are difficult to parallelize because of the relatively small computational granularity characterized by small number of operations per each data access. Our main application is a sparse matrix scaling algorithm which is more memory bound than the sparse matrix vector multiplication operation. We take the application and parallelize it using the standard OpenMP programming principles. Apart from the common race condition avoiding constructs, we do not reorganize the algorithm. Rather, we identify associated performance metrics and describe models to optimize them. By using these models, we implement parallel matrix scaling algorithms for two well-known sparse matrix storage formats. Experimental results show that simple parallelization attempts which leave data/work partitioning to the runtime scheduler can suffer from the overhead of avoiding race conditions especially when the number of threads increases. The proposed algorithms perform better than these algorithms by optimizing the identified performance metrics and reducing the overhead.

Published in:

Parallel Processing (ICPP), 2012 41st International Conference on

Date of Conference:

10-13 Sept. 2012