By Topic

SWAMP+: Enhanced Smith-Waterman Search for Parallel Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shannon Irene Steinfadt ; Genome Sci. Group, Los Alamos Nat. Lab., Los Alamos, NM, USA

More sensitive than heuristic methods for searching biological databases, the Smith-Waterman algorithm is widely used, but it has a high quadratic running time. This work presents a faster approach and implementation for Smith-Waterman that extends the traditional results to return multiple, BLAST-like sub-alignments. The extended Smith-Waterman using Associative Massive Parallelism (SWAMP+) is introduced for three different parallel architectures: Associative Computing (ASC), the Clear Speed coprocessor, and the Convey Computer FPGA coprocessor. We show that parallel versions of Smith-Waterman can be successfully modified to produce multiple BLAST-like sub-alignments while maintaining the original Smith-Waterman sensitivity. This approach combines parallelism and the novel extension to produce multiple sub-alignments for pair wise comparisons. The two parallel SWAMP+ implementations for the ASC model and the Clear Speed CSX-620 use a wave front approach. Both perform a full trace back in the parallel memory and return multiple subsequence alignment results. Results show a linear speedup for the 96 processing elements (PEs) on a single Clear Speed chip. The third approach is a SWAMP+ adaptation that uses the non-associative Convey FPGA coprocessor. This allows for an initial high-speed, high-throughput Smith-Waterman alignment on the hybrid system optimized for large databases. The additional pair wise alignments are run to produce the additional SWAMP+ sub-alignments. The overall results across the three systems are parallel implementations of an extended Smith-Waterman that maintain a speedup and provide a deeper exploration of the query sequences not previously available.

Published in:

2012 41st International Conference on Parallel Processing Workshops

Date of Conference:

10-13 Sept. 2012