By Topic

Image retrieval and classification using adaptive local binary patterns based on texture features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. -H. Lin ; Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, No. 129, Section 3, Sanmin Road, Taichung, Taiwan ; C. -W. Liu ; H. -Y. Chen

In this study, adaptive local binary patterns (ALBP) are proposed for image retrieval and classification. ALBP are based on texture features for local binary patterns. The texture features were used to propose an adaptive local binary patterns histogram (ALBPH) and gradient for adaptive local binary patterns (GALBP) in this study. Two texture features are most useful for describing the relationship in a local neighbourhood. ALBPH shows the texture distribution of an image by identifying and employing the difference between the centre pixel and the neighbourhood pixel values. In the GALBP, the gradient for each pixel is computed and the sum of the gradient of the ALBP number is adopted as an image feature. In this study, a set of colour and greyscale images were used to generate a variety of image subsets. Then, image retrieval and classification experiments were carried out for analysis and comparison with other methods. From the experimental results, the authors discovered that the proposed feature extraction method can effectively describe the characteristics of images in regard to texture image and image type. The image retrieval and classification experiments also produced better results than other methods.

Published in:

IET Image Processing  (Volume:6 ,  Issue: 7 )