By Topic

Optimal 2-D (n\times m,3,2,1) -optical Orthogonal Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaomiao Wang ; Dept. of Math., Ningbo Univ., Ningbo, China ; Yanxun Chang ; Tao Feng

Optical orthogonal codes are commonly used as signature codes for optical code-division multiple access systems. So far, research on 2-D optical orthogonal codes has mainly concentrated on the same autocorrelation and cross-correlation constraints. In this paper, we are concerned about optimal 2-D optical orthogonal codes with the autocorrelation λa and the cross-correlation 1. Some combinatorial constructions for 2-D (n×m,ka,1) -optical orthogonal codes are presented. When k=3 and λa=2, the exact number of codewords of an optimal 2-D (n×m,3,2,1)-optical orthogonal code is determined for any positive integers n ≡ 0,1,3,6,9,10 (mod 12) and m ≡ 2(mod 4).

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 1 )