System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

On the Step-Size Bounds of Frequency-Domain Block LMS Adaptive Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junghsi Lee ; Dept. of Electr. Eng., Yuan-Ze Univ., Chungli, Taiwan ; Hsu-Chang Huang

Least-mean-square (LMS) and block LMS (BLMS) adaptive filters are generally believed to have similar step-size bounds for convergence. Similarly, convergence analyses of frequency-domain block LMS (FBLMS) adaptive filters have suggested that they have very restrictive convergence bounds. In this letter, we revisit Feuer's work and reveal a much larger convergence bound for BLMS adaptive filters. We then analyze the convergence properties of the FBLMS adaptive filter. The new step-size bound for the FBLMS adaptive filter, regardless of whether the input is white or colored, is not that restrictive as generally assumed for the block algorithms in the literature. Extensive simulation results are included to support the analyses.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 1 )