By Topic

Design and Fabrication of 1.35- \mu{\rm m} Laser Diodes With Full Digital-Alloy InGaAlAs MQW

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Duchang Heo ; Korea Electrotechnol. Res. Inst., Ansan, South Korea ; Jin Dong Song ; Il Ki Han ; Won Jun Choi
more authors

We report full digital-alloy In(Ga1-zAlz)As/InP multiple-quantum well 1.35-μm laser diodes using molecular beam epitaxy. The wells and barriers consist of five pairs of InGaAs/InAlAs (1.5 nm/0.375 nm) and four pairs of InGaAs/InAlAs (0.66 nm/0.98 nm). The separate confinement layer consists of two 60 pairs of InGaAs/InAlAs (0.66 nm/0.98 nm) and makes for an optical confinement factor of 7.07%. We obtained a continuous wave of 200 mW from a single cleaved facet of 1.6-mm long broad area LDs, with 100-μm aperture width at 10°C, and high characteristic temperature T0 of 70 K. In this paper, we find that, with the MBE, the full digital-alloy technique makes bandgap engineering possible through the entire LD structure with only InGaAs/InAlAs short-period superlattices pairs.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 1 )