By Topic

Error-Tolerant Resource Allocation and Payment Minimization for Cloud System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng Di ; The University of Hong Kong, Hong Kong ; Cho-Li Wang

With virtual machine (VM) technology being increasingly mature, compute resources in cloud systems can be partitioned in fine granularity and allocated on demand. We make three contributions in this paper: 1) We formulate a deadline-driven resource allocation problem based on the cloud environment facilitated with VM resource isolation technology, and also propose a novel solution with polynomial time, which could minimize users' payment in terms of their expected deadlines. 2) By analyzing the upper bound of task execution length based on the possibly inaccurate workload prediction, we further propose an error-tolerant method to guarantee task's completion within its deadline. 3) We validate its effectiveness over a real VM-facilitated cluster environment under different levels of competition. In our experiment, by tuning algorithmic input deadline based on our derived bound, task execution length can always be limited within its deadline in the sufficient-supply situation; the mean execution length still keeps 70 percent as high as user-specified deadline under the severe competition. Under the original-deadline-based solution, about 52.5 percent of tasks are completed within 0.95-1.0 as high as their deadlines, which still conforms to the deadline-guaranteed requirement. Only 20 percent of tasks violate deadlines, yet most (17.5 percent) are still finished within 1.05 times of deadlines.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:24 ,  Issue: 6 )