Cart (Loading....) | Create Account
Close category search window
 

Conditional Edge-Fault Hamiltonicity of Cartesian Product Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chia-Wen Cheng ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chia-Wei Lee ; Sun-Yuan Hsieh

A graph G is conditional k-edge-fault Hamiltonian if it remains Hamiltonian after deleting at most k edges and each vertex incident to at least two nonfaulty edges. A graph G is k-edge-fault Hamiltonian-connected if it remains Hamiltonian-connected after deleting at most k edges. This study shows that the conditional edge-fault Hamiltonicity of the Cartesian product network G x H can be efficiently evaluated given two graphs G and H that are edge-fault Hamilton-connected and conditional edge-fault Hamiltonian. This study uses the result to evaluate the conditional edge-fault Hamiltonicity of two multiprocessor systems, the generalized hypercubes and the nearest neighbor mesh hypercubes, both of which belong to Cartesian product networks.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 10 )

Date of Publication:

Oct. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.