By Topic

Optimal generation investment planning: Pt. 1: network equivalents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Di Shi ; School of Electrical, Computer and Energy Engineering, Arizona State University, USA ; Daniel L. Shawhan ; Nan Li ; Daniel J. Tylavsky
more authors

The requirements of a network equivalent to be used in new planning tools are very different from those used in traditional equivalencing procedures. For example, in the classical Ward equivalent, each generator in the external system is broken up into fractions. For newer long-term investment applications that take into account such things as greenhouse gas (GHG) regulations and generator availability, it is computationally impractical to model fractions of generators located at many buses. To overcome this limitation, a modified- Ward equivalencing scheme is proposed in this paper. The proposed scheme is applied to the entire Eastern Interconnection (EI) to obtain several backbone equivalents and these equivalents are tested for accuracy under a range of operating conditions. In a companion paper, the application of an equivalent developed by this procedure is used to perform optimal generation investment planning.

Published in:

North American Power Symposium (NAPS), 2012

Date of Conference:

9-11 Sept. 2012