Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Crosstalk reduction in N×N WDM multi/demultiplexers by cascading small arrayed waveguide gratings (AWG's)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kawai, T. ; NTT Opt. Network Syst. Labs., Kanagawa, Japan ; Obara, H.

This paper shows a new scheme which improves the crosstalk performance of large optical multi/demultiplexers, a key component in wavelength division multiplexing (WDM) systems. This scheme uses arrayed waveguide gratings (AWG's) of various sizes and requires no additional equipment. It is well known that a large multi/demultiplexer can be constructed by cascading small multi/demultiplexers. We have studied the impact of the number and size of AWG stages on crosstalk performance. This paper proves that to obtain a multistage multi/demultiplexer with minimum crosstalk, the total channel number of each AWG stage must be minimized. For example, cascading 10-channel AWG's and 11-channel AWG's improves the crosstalk performance of a 110-channel multi/demultiplexer by about 7.5 dB. Furthermore, the crosstalk performance degradation due to fabrication error is theoretically investigated taking channel bandwidth into account. Optimum design parameters of multistage AWG's are introduced: When the AWG suppression ratio is 30 dB and the ratio of channel bandwidth to channel spacing is about 0.24, the degradation in crosstalk performance due to fabrication error is minimized. The tradeoff between the crosstalk performance and the efficiency in terms of hardware and wavelength are also discussed. It is discovered that this simple scheme can yield a crosstalk-free WDM router. Crosstalk reduction obtained by this scheme allows the realization of flexible multiwavelength networks based on wavelength routing

Published in:

Lightwave Technology, Journal of  (Volume:15 ,  Issue: 10 )