Cart (Loading....) | Create Account
Close category search window

Distributed Classification of Traffic Anomalies Using Microscopic Traffic Variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thajchayapong, S. ; Nat. Electron. & Comput. Technol. Center, Nat. Sci. & Technol. Dev. Agency, Pathumthani, Thailand ; Garcia-Trevino, E.S. ; Barria, J.A.

This paper proposes a novel anomaly classification algorithm that can be deployed in a distributed manner and utilizes microscopic traffic variables shared by neighboring vehicles to detect and classify traffic anomalies under different traffic conditions. The algorithm, which incorporates multiresolution concepts, is based on the likelihood estimation of a neural network output and a bisection-based decision threshold. We show that, when applied to real-world traffic scenarios, the proposed algorithm can detect all the traffic anomalies of the reference test data set; this result represents a significant improvement over our previously proposed algorithm. We also show that the proposed algorithm can effectively detect and classify traffic anomalies even when the following two cases occur: 1) the microscopic traffic variables are available from only a fraction of the vehicle population, and 2) some microscopic traffic variables are lost due to degradation in vehicle-to-vehicle (V2V) or vehicle-to-infrastructure communications (V2I).

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.