Cart (Loading....) | Create Account
Close category search window
 

Performance of Generalized Regression Neural Network-based channel estimation in Vectored DSL systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huberman, S. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada ; Tho Le-Ngoc

It is well-known that Vectored Digital Subscriber Line (DSL) transmission promises significant theoretical data-rate increases for DSL technology; however, Vectored DSL requires full knowledge of the channel. The effectiveness of Vectored DSL transmission in a practical setting, where channel knowledge is subject to error, has yet to be determined. This paper proposes a Generalized Regression Neural Network (GRNN)-based approach to DSL channel estimation by interpolating between a subset of measured or estimated data-points. Furthermore, closed-form expressions for the effect of channel estimation error on he achievable Vectored DSL data-rate are derived, using a Zero-Forcing (ZF) interference canceller for upstream transmission and a Diagonalizing Pre-coder (DP) for downstream transmission. Finally, simulation results are provided to demonstrate the performance loss associated with channel estimation error for Vectored DSL transmission, based on the ANN approach and a linear regression approach.

Published in:

Electrical & Computer Engineering (CCECE), 2012 25th IEEE Canadian Conference on

Date of Conference:

April 29 2012-May 2 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.