By Topic

Recursive filtering for a class of nonlinear systems with missing measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jun Hu ; Res. Inst. of Intell. Control & Syst., Harbin Inst. of Technol., Harbin, China ; Zidong Wang ; Bo Shen ; Chenxiao Cai
more authors

This paper is concerned with the finite-horizon recursive filtering problem for a class of nonlinear time-varying systems with missing measurements. The missing measurements are modeled by a series of mutually independent random variables obeying Bernoulli distributions with possibly different occurrence probabilities. Attention is focused on the design of a recursive filter such that, for the missing measurements, an upper bound for the filtering error covariance is guaranteed and such an upper bound is subsequently minimized by properly designing the filter parameters at each sampling instant. The desired filter parameters are obtained by solving two Riccati-like difference equations that are of a recursive form suitable for online applications. A simulation example is exploited to demonstrate the effectiveness of the proposed filter design scheme.

Published in:

Control (CONTROL), 2012 UKACC International Conference on

Date of Conference:

3-5 Sept. 2012