By Topic

An adaptive observer-based parameter estimation algorithm with application to road gradient and vehicle's mass estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mahyuddin, M.N. ; Dept. of Mech. Eng., Univ. of Bristol, Bristol, UK ; Jing Na ; Herrmann, G. ; Xuemei Ren
more authors

A novel observer-based parameter estimation algorithm with sliding mode term has been developed to estimate the road gradient and vehicle weight using only the vehicle's velocity and the driving torque from the engine. The estimation algorithm exploits all known terms in the system dynamics and a low pass filtered representation to derive an explicit expression of the parameter estimation error without measuring the acceleration. The proposed algorithm which features a sliding-mode term to ensure the fast and robust convergence of the estimation in the presence of persistent excitation is augmented to an adaptive observer and analyzed using Lyapunov Theory. The analytical results show that the algorithm is stable and ensures finite-time error convergence to a bounded error even in the presence of disturbances. A simple practical method for validating persistent excitation is provided using the new theoretical approach to estimation. This is validated by the practical implementation of the algorithm on a small-scaled vehicle, emulating a car system. The slope gradient as well as the vehicle's mass/weight are estimated online. The algorithm shows a significant improvement over a previous result.

Published in:

Control (CONTROL), 2012 UKACC International Conference on

Date of Conference:

3-5 Sept. 2012