By Topic

Decision Boundary Evaluation of Optimum and Suboptimum Detectors in Class-A Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saaifan, K.A. ; Center of Adv. Syst. Eng. (CASE), Jacobs Univ. Bremen, Bremen, Germany ; Henkel, W.

The Middleton Class-A (MCA) model is one of the most accepted models for narrow-band impulsive interference superimposed to additive white Gaussian noise (AWGN). The MCA density consists of a weighted linear combination of infinite Gaussian densities, which leads to a non-tractable form of the optimum detector. To reduce the receiver complexity, one can start with a two-term approximation of the MCA model, which has only two noise states (Gaussian and impulsive state). Our objective is to introduce a simple method to estimate the noise state at the receiver and accordingly, reduce the complexity of the optimum detector. Furthermore, we show for the first time how the decision boundaries of binary signals in MCA noise should look like. In this context, we provide a new analysis of the behavior of many suboptimum detectors such as a linear detector, a locally optimum detector (LOD), and a clipping detector. Based on this analysis, we insert a new clipping threshold for the clipping detector, which significantly improves the bit-error rate performance.

Published in:

Communications, IEEE Transactions on  (Volume:61 ,  Issue: 1 )