Cart (Loading....) | Create Account
Close category search window
 

The Elimination of Spatial-Temporal Uncertainty in Underwater Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chih-Cheng Hsu ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Ming-Shing Kuo ; Cheng-Fu Chou ; Lin, K.C.-J.

Since data in underwater sensor networks (UWSNs) is transmitted by acoustic signals, the characteristics of a UWSN are different from those of a terrestrial sensor network. Specifically, due to the high propagation delay of acoustic signals in UWSNs, referred as spatial-temporal uncertainty, current terrestrial MAC schemes do not work well in UWSNs. Hence, we consider spatial-temporal uncertainty in the design of an energy-efficient TDMA-based MAC protocol for UWSNs. We first translate the TDMA-based scheduling problem in UWSNs into a special vertex-coloring problem in the context of a spatial-temporal conflict graph (ST-CG) that describes explicitly the conflict delays among transmission links. With the help of the ST-CG, we propose two novel heuristic approaches: 1) the traffic-based one-step trial approach (TOTA) to solve the coloring problem in a centralized fashion; and for scalability, 2) the distributed traffic-based one-step trial approach (DTOTA) to assign the data schedule for tree-based routing structures in a distributed manner. In addition, a mixed integer linear programming (MILP) model is derived to obtain a theoretical bound for the TDMA-based scheduling problem in UWSNs. Finally, a comprehensive performance study is presented, showing that both TOTA and DTOTA guarantee collision-free transmission. They thus outperform existing MAC schemes such as S-MAC, ECDiG, and T-Lohi in terms of network throughput and energy consumption.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.